Countdown header img desk

MAI SUNT 00:00:00:00

MAI SUNT

X

Countdown header img  mob

MAI SUNT 00:00:00:00

MAI SUNT

X

Mathematical Logic

Mathematical Logic - Heinz-dieter Ebbinghaus

Mathematical Logic

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe- matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con- sequence relation coincides with formal provability: By means of a calcu- lus consisting of simple formal inference rules, one can obtain all conse- quences of a given axiom system (and in particular, imitate all mathemat- ical proofs). A short digression into model theory will help us to analyze the expres- sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.
Citeste mai mult

-10%

transport gratuit

PRP: 650.91 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

585.82Lei

585.82Lei

650.91 Lei

Primesti 585 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe- matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con- sequence relation coincides with formal provability: By means of a calcu- lus consisting of simple formal inference rules, one can obtain all conse- quences of a given axiom system (and in particular, imitate all mathemat- ical proofs). A short digression into model theory will help us to analyze the expres- sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.
Citeste mai mult

De pe acelasi raft

De acelasi autor

Parerea ta e inspiratie pentru comunitatea Libris!

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one